Kea, our smart alpine parrots, are sometimes a little too clever for their own good. They are a species struggling to maintain large and healthy populations. Part of their problem is that they are very curious and seem to be fascinated by what humans do, and more importantly, often live in human-influenced habitat. This is not such a good trait when it leads them to interact with hazards like lead or toxins, nor is it useful if they find human ‘junk’ food.
This curiosity is also not helpful when we want to study kea. Many of the approaches that work with other bird species just fail for kea. Instead of going about their business they come and see what you are doing, and that’s not great for understanding key aspects of their life histories.

I has some first-hand experience with researching kea about twenty five years ago, when I was a newly minted Lincoln University lecturer. I was helping Kerry-Jayne Wilson to supervise a masters student, Mark Jarratt. Mark was interested in how much lead, and other nasty waste, the kea were finding in the local Arthur’s Pass area, and consuming, in their habitat. For example, lead was present in paints, shotgun pellets and rubbish in the tips and kea were often observed eating it.
Mark had to catch kea to take blood samples to check for lead contamination. Catching kea can be fairly challenging. They are not easily fooled and they can learn by observing others. Adding to the difficulty was that we had to keep the birds in captivity for an hour or so as part of the procedure. And this was a problem.
We initially used a cage. We would capture a kea, put it in a holding cage, and then go and try and capture the next one. However, each kea would often figure out how to escape the cage. We would return to find a cage open and our patient free (and not likely to be so easily caught again). So then we took the cage with a kea into a small hut nearby, thinking that if the bird got out of the cage then they would at least be in the hut. Unfortunately, some of the kea managed to figure out how to open the windows in the hut. Moral: don’t work with animals smarter than you are!
So, when PhD student Jodanne Aitken came to James Ross and me and wanted to do a project on kea, I was a little hesitant. However, Jodanne is nothing if not persistent, passionate and persuasive, and a project on kea was begun.

Jodanne was interested in how kea move about and utilise the landscape. Much of her PhD work is in the Southern Alps around Arthur’s Pass, where she is using transmitters to figure out just how mobile kea can be. Is that kea you see gnawing your car wiper blades from the local valley or could it be from several mountain ranges away? More on that in future EcoLincNZ articles!
Jodanne’s initial work was in looking at how kea might be using plantations of introduced pine and Douglas fir in the Nelson region. Forestry has become a dominant part of many regional landscapes, often hilly and where native forests once grew (and kea once flew). This is especially the case in the Nelson region. The question that Jodanne wanted to answer was whether these forestry plantations, typically monocultures with a lot of human activity, provide a net gain or loss for kea.

Are plantations the equivalent of barren wastes for kea, where there is little food and high densities of mammalian predators (not to mention hazards that humans introduce into an area)? Alternatively, do plantations offer new food resources and places to roost and nest? Of course there could be a range of outcomes from positive to negative.
Jodanne was able to work in forestry blocks run by Nelson Forestry Limited. Local workers were key to providing Jodanne with almost real-time information on kea presence within blocks that were being actively harvested. One advantage of working in plantations were the forestry roads that gave rapid, if a little hair-raising, access to most of these areas.
Jodanne was able to capture three kea and mount GPS trackers in fancy backpacks to collect movement data. She also observed kea during the morning and late afternoon-early evening periods for several months, mostly to record their feeding. Jodanne used direct and video observations to observe their foraging. Kea poo was also collected when available to get some physical information about diet.
The kea with transmitters spread their time between the plantation areas and neighbouring native forest. The majority of time was spent in the pines where they foraged, roosted and nested. Kea were observed eating pine seed, as well as tissue stripped off newly harvested Douglas fir logs. The faecal samples, well the bits that could be identified, contained lots of invertebrates.

In short, as summarised in a NZ Journal of Zoology paper, kea seemed to be using the pine plantations in similar ways to more natural areas. Good news! However, one of three kea that carried a GPS recorder was killed by a cat. So, there may be some significant risks for kea spending a lot of their time in these areas. ‘Swings and roundabouts’ as they say.
Despite this being a relatively small scale study, it does indicate that we could learn a lot more about kea in these highly modified landscapes. Jodanne has taken this training and shifted her sights to a much larger scale project on kea movement in the Southern Alps and southern Westland.
Kea are one of the smartest bird species on the planet but they still need our help to let them survive the arrival of the smartest mammal species and the changes that we have made. Understanding this clever species is fundamental to helping them. This tricky challenge has been accepted by Jodanne and her research colleagues.
Article by Adrian Paterson, an Associate Professor in the Department of Pest-management and Conservation at Lincoln University.