Small animals show us the value of old natural forests

Hambach. You are in Germany right now, halfway between Cologne and the Belgian border. I’d like to warmly welcome you to the Hambach forest – an ancient forest that is dominated by oak and hornbeam, representing a rare forest type in modern Germany. The Hambach forest is the last remnant of a forest that ranged over wide flat plains since the end of the last ice age around 12,000 years ago. Regrettably, it has become famous for being gradually absorbed by a vast hole!

Tree house in the Hambach forest.
CC BY-NC 2.0 by Tim Wagner, Flickr

The Hambach forest used to range over an area of around 5 500 ha. During the past four decades, around 90 percent has already vanished. What remains today is not a normal forest anymore – idyllic, undisturbed, and peaceful. The forest is not only threatened by further sliding into the hole. In 2018, the Hambach forest also became the stage for one of the largest major police operations, owing to another curiosity about the Hambach forest: it is inhabited by people, living in tree houses. Occupying the forest, they want to protect what is left of it and demonstrate against the further expansion of the hole. However, since the forest is privately owned by the company that sacrifices it for the hole, activists were forced out of the forest with the help of police power – before occupying it again.

So what is the gigantic hole? It is the result of four decades of open-cast coal mining in the Hambach region. However, its further growth will eventually take an end. For the year 2038, Germany has committed itself to complete the coal phase-out, a critical step for Germany’s energy transition. Until then, coal power stations in Germany can be fuelled by coal – extracted from German coal mines (“holes”), with a spectacularly bad impact on the climate. Still, based on the coal-phase out, the remaining part of the Hambach forest can be saved.

Hambach open-cast coal mining hole.
CC BY-SA 2.0 by Traveling Tourist, Flickr

Growing up close to the Hambach forest, that received international attention in the environmental and climate movement, I’ve been concerned about one question for a very long time: How can we replace an ancient forest that is destroyed for mining purposes?

“If we are moving several villages, people, and a motorway for the open-cast coal mining, why don’t we also move the forest?” That is how people in my region would have addressed this question in the past. Believe me or not, that’s exactly what has been done. At one end of the gigantic hole, the largest artifical hill worldwide was created and recultivated with trees. It serves the region now as a recreation area, comprising an about 70km network of hiking trails. “Forest is forest. There is no difference”, people say in my region. So why be concerned?

But is it really that easy? Are humans really able to shape a new forest within a few years as a replacement for a destroyed ancient forest, that has the same value for biodiversity and people? And will the planted trees provide an appropriate habitat for all mammals, birds, insects, spiders, herbs, lichens and other important life forms that used to inhabit the lost forest?

In many countries around the world, there are nowadays regulations regarding compensation and restoration measures that mining and other companies have to fulfil when their activities destroy land. However, in reality, is it always possible to restore an ecosystem that has undergone complete degradation from a natural forest to a mining site, back to its original state and biodiversity value? Otherwise, it is possible to shape a new ecosystem with the same values at another site – like it was aimed with the planted artifical hill as a compensation for the destruction of the Hambach forest? Fortunately, there are ecologists who have learned the answers to these questions. Closely monitoring the process of ecosystem restoration they can tell how successful undertaken restoration efforts are for biodiversity.

So, now that we’ve already practiced thinking in great dimensions, let’s undertake a great jump to another mined forest – we’re jumping off Germany, over Italy and the Mediterranean Sea, crossing the Arabian Peninsula and the Indian Ocean, passing Australia and are finally landing in… Auckland! Well done! We’re standing here at the Hunua Quarry site, near Papakura in South Auckland. It is part of the Hunua ranges that consist of over 20 000 ha of native forest, comprising tawa, podocarp, kaurihard beech, and taraire forest as main vegetation types.

The Hunua Ranges.
CC BY-NC 2.0 by Neil Hunt, Flickr

The Hunua Quarry is managed by Winston Aggregates, New Zealand’s largest aggregates provider. As a restoration measure, in six years over 140 000 plants have been planted in this highly modified habitat after quarrying. The aim is to provide a new forest as a replacement of the forest area destroyed. Next to the restoration area, you can still recognize unrestored areas of exotic grassland that have established after quarrying, as well as undisturbed mature native forest.

Researchers from Lincoln University (Mike Bowie and colleagues) studied the invertebrate communities at Hunua Quarry, including wetas, beetles, cockroaches, crickets, spiders, centipedes, earthworms, ants, flies, mites, moths, slugs and snails, amongst many others. Although rather small animals, invertebrates are essential for the functioning and health of ecosystems, thereby making an important contribution to biodiversity. The objective of their study was to develop a better technique for the assessment of restoration success after mining, using invertebrates as bioindicators. Bioindicators are species that react sensitively to changes in their environment so that they can be used to assess the quality of an ecosystem.

The researchers collected invertebrates in the undisturbed mature forest, in restored areas, as well as in the unrestored exotic grassland. They compared how many and which invertebrates were living in the respective areas. Interestingly, the undisturbed mature forest, the restored areas, and the unrestored exotic grassland were characterized by very different invertebrate communities. The invertebrates found in the six-year-old restored areas were mostly still very unlike those found in the undisturbed mature forest. For instance, the researchers were able to collect eight times more cave weta in their pitfall traps in the undisturbed mature forest than in the restored areas. In addition to cave wetas, the mature forest also harboured many spiders and beetles. Hence, if the forest restoration process is successful, it is expected that more cave weta, spiders and beetles typical for mature forest will inhabit the restored sites in the next years. At the same time, fewer exotic snails, slugs and earthworms that were found to be characteristic for the unrestored exotic grasslands are expected.

This beetle,
Holcaspis mucronata,
was found most abundant in the mature forest.
CC BY 4.0 by Birgit E. Rhode, Wikimedia Commons

The study identified several invertebrate species as bioindicators. These can be used in future studies to assess the success of forest restoration at mine or quarrying sites. The study findings have been recognized in several other invertebrate studies of different parts of the world, for example, in a global synthesis on how good forestry plantations are at providing habitats to native beetles in comparison to natural forests. In that study, restoration sites were considered as forestry plantations, being planted by humans for conservation purposes and therefore different from natural forests. Another study dealt with the effect of removing an invasive plant as a restoration measure on an Mediterranean island. It referred to the study at Hunua Quarry for the use of beetles as bioindicators to observe the effects of restoration.

All in all, the study showed that invertebrates might tell us more about the quality of a forest than you would easily see yourself. Hence, studying invertebrates as bioindicators has great potential for making better decisions in ecosystem management and for restoration projects. I hope that research about restoration will also raise public awareness for the complexity of biodiversity and the needs for appropriate habitats. Perhaps, I will hear many people around the Hambach forest region in Germany say: “Forest is not like forest. We need to consider old natural forests as valuable habitats and save them from vanishing, not only for the sake of spiders and beetles.”

This article was prepared by Master of International Nature Conservation student Vivien Michel as part of the ECOL608 Research Methods in Ecology course.

Link to the research article:

Bowie M, Stokvis E, Barber K, Marris J, Hodge S. 2018. Identification of potential invertebrate bioindicators of restoration trajectory at a quarry site in Hunua, Auckland, New Zealand. New Zealand Journal of Ecology 43.

Read more:

Donahue, Michelle Z. 2018. Is Germany’s Hambach Forest Doomed by Coal? National Geographic, April 13. https://web.archive.org/web/20190914181247/https:/www.nationalgeographic.com/news/2018/04/hambach-forest-germany-logging-coal-conservation-science/

Coal exit will save Hambach Forest: activists. Deutsche Welle, January 27, 2019. https://www.dw.com/en/german-coal-exit-plan-will-save-hambach-forest-activists-say/a-47251256

Leave a Reply