Remove one NZ invasive mammal predator and another steps into its place

Invasive species are a major concern for ecosystems worldwide, causing significant disruptions to native flora and fauna. Some mammals can have particularly devastating effects on local ecosystems due to their predatory nature. In the Hawke’s Bay, New Zealand, a recent study titled “Niche Partitioning in a Guild of Invasive Mammalian Predators” sheds light on the dynamics of invasive mammalian predators and their impact on the region’s native biodiversity.

I’ll walk you through the key discoveries and explain why they hold immense importance in our understanding of niche partitioning and its implications for ecosystem management.

Niche partitioning refers to the process by which species with similar ecological requirements coexist within an ecosystem by utilizing different resources or occupying different ecological niches. Niche partitioning reduces direct competition, promoting the coexistence of species that would otherwise struggle to survive in the same habitat.

In Hawke’s Bay, a guild of invasive mammalian predators has established, comprising three key species: stoats(Mustela erminea), ferrets (Mustela furo), and feral cats (Felis catus). 

These predators were introduced to New Zealand and have since wreaked havoc on many native bird populations. Recent studies have revealed an intriguing pattern of niche partitioning among these invaders, suggesting a potential balance within the guild.

Camera traps were deployed in three seasons. Credit by Albert Salemgareyev/ACBK

Researchers have observed distinct differences in the dietary preferences and hunting strategies among these invasive predators in Hawke’s Bay. These variations have allowed the species to exploit food, reducing direct competition and encouraging the peaceful coexistence of individuals.

Stoats, being the smallest and most agile of the three predators, specialize in hunting rats, mice, and birds. Their slender bodies and keen sense of hearing enable them to pursue their prey with stealth and precision. Ferrets, on the other hand, are larger and more versatile, adapting to different types of prey or using various hunting techniques. Ferrets tend to target larger prey, such as rabbits and small hares, which they capture using their strength and speed. Feral cats, similar to stoats and ferrets, are solitary hunters, exhibiting a broader dietary range, preying on both small and medium-sized mammals, birds, and reptiles.

While the predators may occasionally target overlapping prey species, they generally exhibit distinct foraging preferences and occupy different microhabitats. Stoats predominantly inhabit forested areas, where their excellent climbing abilities give them an advantage in pursuing prey in trees.  Ferrets, with their larger size and ground-based hunting strategies, are often found in open grasslands and shrublands. Feral cats, being highly adaptable, can exploit a range of habitats, from dense forests to human settlements.

The phenomenon of niche partitioning among invasive predators in Hawke’s Bay has important implications for native species conservation. By occupying different ecological niches, these predators help reduce the burden on specific native animals in an indirect manner, allowing them to persist despite the presence of invaders.

Bird species, in particular, have been heavily impacted by the invasion of mammalian predators. Native birds, such as kiwi, weka, and tui, have experienced population declines due to predation. However, the niche partitioning observed among invasive predators offers a glimmer of hope for the survival of some native bird species. For example, stoats target ground-dwelling birds, while ferrets focus on larger prey, like rabbits. This division of labour reduces the overall predation pressure on specific bird species and allows them to maintain a foothold in their respective habitats.

Stoats are tricky to study. They are hard to find in the field and difficult to keep in captivity. Image from Adrian Paterson.

Understanding the dynamics of niche partitioning among invasive mammalian predators can inform targeted conservation strategies. By recognizing the specific resources and habitats favored by each predator species, conservationists can create plans for managing natural areas that utilize the division of habitats to safeguard endangered native animals.
Implementing effective trapping and removal programs, focused on the specific predators posing the greatest threat to certain bird species, can help alleviate their population declines.

Habitat restoration initiatives aimed at enhancing native bird habitats, while creating barriers for invasive predators, can further support the survival and recovery of endangered species. For instance, Wellington, Zealandia is a 225-hectare fenced sanctuary dedicated to protecting and restoring native wildlife. The sanctuary is predator-free and provides a safe haven for endangered bird species like the tīeke (saddleback), kākā, and hihi (stitchbird). Zealandia also conducts active predator control outside the sanctuary to create a buffer zone for native birds.

The study on niche partitioning among invasive mammalian predators in Hawke’s Bay offers valuable insights into the complex interactions within ecosystems and the potential consequences of invasive species on native biodiversity. These findings provide a foundation for conservation efforts and ecosystem management strategies aimed at mitigating the negative impacts of invasive predators on native flora and fauna. By understanding the dynamics of invasive species, we can work towards restoring and preserving the delicate balance of ecosystems, ultimately fostering a more sustainable future for our planet.

Removing cats and ferrets from an ecosystem often has unforeseen consequences, as evidenced by the subsequent increase in site use by stoats. Stoats, cunning predators known for their ability to adapt to changing circumstances, have exploited the absence of cats and ferrets to their advantage. In the absence of these competitors, stoats have become more active during the day, closely following diurnal bird activity. This behavioral shift has raised concerns among conservationists, as it highlights the need for predator control measures to account for the specific hunting patterns and preferences of different predators.

Failing to address this issue adequately could lead to a worse outcome for daylight birds, whose vulnerability to stoat predation may increase if their activities are not considered in predator control strategies. Therefore, it is crucial for ongoing conservation efforts to not only focus on removing invasive predators but also to consider the complex interactions among species and the potential cascading effects that may arise.

This article was prepared by Master of International Nature Conservation student Albert Salemgareyev as part of the ECOL608 Research Methods in Ecology course. Albert won a prestigious Whitley Award for Conservation in 2023.

Garvey, Patrick M., Alistair S. Glen, Mick N. Clout, Margaret Nichols, and Roger P. Pech. 2022. “Niche Partitioning in a Guild of Invasive Mammalian Predators.” Ecological Applications 32(4): e2566. https://doi.org/10.1002/eap.2566 

Leave a Reply